Symmetric multistep methods for charged - particle dynamics
نویسندگان
چکیده
A class of explicit symmetric multistep methods is proposed for integrating the equations of motion of charged particles in an electro-magnetic field. The magnetic forces are built into these methods in a special way that respects the Lagrangian structure of the problem. It is shown that such methods approximately preserve energy and momentum over very long times, proportional to a high power of the inverse stepsize. We explain this behaviour by studying the modified differential equation of the methods and by analysing the remarkably stable propagation of parasitic solution components.
منابع مشابه
Long-Term Stability of Symmetric Partitioned Linear Multistep Methods
Long-time integration of Hamiltonian systems is an important issue in many applications – for example the planetary motion in astronomy or simulations in molecular dynamics. Symplectic and symmetric one-step methods are known to have favorable numerical features like near energy preservation over long times and at most linear error growth for nearly integrable systems. This work studies the sui...
متن کاملSymplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملTrigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems
In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...
متن کاملOPTIMAL DESIGN OF ARCH DAMS FOR FREQUENCY LIMITATIONS USING CHARGED SYSTEM SEARCH AND PARTICLE SWARM OPTIMIZATION
In recent years, the importance of economical considerations in the field of dam engineering has motivated many researchers to propose new methods for minimizing the cost of dames and in particular arch dams. This paper presents a method for shape optimization of double curvature arch dams corresponding to minimum construction cost while satisfying different constraints such as natural frequenc...
متن کاملA new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrodinger equation and related IVPs with oscillating solutions
A new two-step implicit linear Obrechkoff twelfth algebraic order method with vanished phase-lag and its first, second, third and fourth derivatives is constructed in this paper. The purpose of this paper is to develop an efficient algorithm for the approximate solution of the one-dimensional radial Schrodinger equation and related problems. This algorithm belongs in the category of the multist...
متن کامل